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Introduction

The first electronic computers (c.1940) were programmed in machine language using sequences of 
0s and 1s, instructing the computer what operations to execute. The operations were very low level 
(move data from one place to another, add two values, compare two values, etc), thus, making 
programming slow, difficult and error-prone, programs being hard to understand and modify. The 
move to higher-level languages was natural. With the pass of time, new programming languages 
were created, each trying to add original features in order to make programming easier and more 
natural [B1].

Nowadays, there are myriad of programming languages, which can be classified in different 
ways, one of them being by generation. Machine-level languages are first-generation languages 
(1GL), second-generation (2GL) are assembly languages, and third-generation (3GL), the higher-
level languages like Fortran, Cobol, Lisp, C, C++, Java and C#. Fourth-generation (4GL) languages 
are languages designed for specific applications (eg. NOMAD – report generation, SQL – database 
queries, MATLAB – numerical computing, Postscript – text formating). Fifth-generation (5GL) 
languages are based around solving problems using constraints given to the program, rather than 
using an algorithm written by a programmer. Most constraint-based and logic programming 
languages and some declarative languages, are fifth-generation languages (eg. Prolog, OPS5) [B1]. 

The 4GL followed the 3GL in an upward trend toward higher abstraction and statement 
power. 4GLs have often been compared to Domain-Specific programming Languages (DSLs), and 
are considered a subset of DSLs [A1, A2]. While 4GLs are designed to build specific programs, 
5GLs are designed to make the computer solve a given problem without the programmer. 
The programmer needs to specify the problems to be solved and what conditions must be met,
without worrying about how to implement a routine or algorithm to solve them. Fifth-generation 
languages are used mainly in artificial intelligence research. 4GL and 5GL projects are more 
oriented toward problem solving and systems engineering.

We can also make a classification based on the amount of abstraction between a certain 
language and machine language. 1GLs and 2GLs are usually described as being "close to the 
hardware" because of their low level of abstraction. 3GLs are high-level programming languages 
because they provide strong abstraction from the details of the computer. The purpose of this greater 
abstraction and hiding of details is intended to make the language user-friendly, as it includes 
concepts from the problem domain instead of those of the machine used. Generally, it's much easier 
to write programs in higher-level programming languages, but it's less efficient as the target 
programs tend to run slower. On the other side, using a lower-level language offers a programmer 
more control over a computation, being able to produce more efficient code, but it's harder to write 
programs, which are also less portable, harder to maintain, and error-prone. 

Let's take for example C++ and Java. Even though they are both high-level languages, they 
still differ, with regard to the provided level of abstraction. Thus, C++ is regarded as an 
intermediate-level language, as it comprises a combination of both high-level and low-level 
language features, whereas Java goes high-level and above, providing a simpler object model (than 
C++) and fewer low-level facilities. The many shifts in the popular choice of programming 
languages have been in the direction of increased levels of abstraction. That's why Java is much 
popular these days than C++. Nevertheless, C++ is still the language of choice when it comes to 
high-performance software, ranging from server applications to operating systems. 

Although being very powerful, C++'s policy is to provide all the necessary ingredients and 
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let the programmers cook the dishes they want. Even Bjarne Stroustrup, the designer and original 
implementor of C++, admits that "without a good library, most interesting tasks are hard to do in 
C++; but given a good library, almost any task can be made easy", suggesting the need for some 
form of higher components (libraries in this case), for an efficient use of the language. 

When dealing with complex problems, the solutions tend to get large and only a small part 
of the code is being used to actually solve the problem, the rest of the effort being put into writing 
boilerplate code. Thus, most of the time it's hard to understand the solution and even moving the 
generic code into libraries doesn't solve the problem. And all that because we have to express our 
solutions in the (fixed) base language, being unable to extend it with new, user defined, syntactic 
constructions. We can increase productivity by providing programmers with languages that are 
close to problem domain, but creating a new full-blown language for each problem we try to solve, 
can get too expensive and unfeasible [A3].

A natural solution to overcome the aforementioned problems would be to combine DSLs 
with a General Purpose programming Language (GPL) (like C++ or Java). Most solutions available 
today target Java or other newer languages, solutions based on and targeting C++ being inexistent. 
Thus, we propose Genesis, a C++ library meant to ease the development and use of textual DSLs.
The base language doesn't provide us mechanisms to create new syntactic constructions, so instead, 
we create language extensions with Genesis and mix them with our C++ code. Then, these 
extensions are translated into plain C++, and we can build the code like any regular C++ program. 

Genesis provides a generic solution for code generation, so we're not bound to generating 
only C++ code. A Genesis user creates new languages and also decides what should they generate, 
that being any kind of text (plain text, C++, Java, HTML, XML and so on). But, only text 
generation based on some rules doesn't always suffice. Beside code generation, Genesis allows a 
user to define custom actions (written in C++) to be run when a rule or subrule of the language is 
matched. Hence, if we ignore the code generation component and assign semantic actions to rules, 
the result will be an interpreter for the defined language. 

The rest of the thesis is outlined as follows: In Chapter 1 we present a more detailed view on 
DSLs. Chapter 2 introduces the Genesis library and its design. In Chapter 3 we describe its 
implementation thoroughly, and in Chapter 4 we present some usage scenarios of it. Finally, we 
summarize and propose certain directions for further improvements.
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Contributions

Current trends in software engineering show the increasing needs for tools which should help 
software engineers enhance the quality, productivity, reliability, maintainability, portability and 
reusability of both source code and applications. More than that, whenever possible, they should 
give the ability to work in terms of the problem space, so that even domain experts could 
understand, validate, modify, and often even develop applications. Some or even all these benefits 
can be achieved by (using) DSLs. Although not new, DSLs gain more and more attention, mainly 
because of the need for extra levels of abstractions. DSLs allow solutions to be expressed in the 
idiom and at the level of abstraction of the problem domain. Once a DSL is made, we can start 
creating instances of it, which will either execute or generate code (usually) for a GPL, depending 
on how the DSL is implemented. 

Our work has materialized in the creation of Genesis, a C++ library which helps its users to  
develop and use textual DSLs. Genesis has two main features: code generation and the use of 
semantic actions. The code generation utility can generate any kind of text (from plain text to any 
GPL source code), whereas semantic actions must be written in the base language (C++) in order to 
execute. The main contribution is that Genesis targets the C++ language because, even though 
similar software exist, they target languages like Java or C#. The host language is very important 
because, even though we write our programs in a higher level of abstraction, these domain-specific 
languages either translate into or execute code which is written in the base language. Thus, the 
power of DSLs is directly dependent on the power of the GPLs used. 

DSLs cover a wide range of application domains, like software engineering, systems 
software, multimedia, telecommunications or security, just to name a few. The security domain is a 
very important one, and a large number of DSLs were created  for its different fields: network 
monitoring and network intrusion detection [A23,  A30, A31, A9, A46], vulnerability analysis on a 
network [A38], specification of security protocols [A43, A47], cryptographic algorithms [A44], and 
so on. With Genesis we managed to create several DSLs in various fields: generate questionnaires, 
manipulate 3D objects, and the most important, in the security domain, specify security protocols, 
and capture packets over the network and analyze them. 
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Chapter 1

Domain-Specific Languages

Domain-Specific Languages (DSLs) have been around for a long time but, until now there hasn't 
been any general treatment of the techniques and characteristics of DSLs in general, as opposed to 
the traits of a particular DSL. Thus, this chapter is mainly based on Fowler's book on DSLs [B2]. 
Alongside, there will be references to various articles, to support the statements made.

1.1   Overview
"Programming languages are notations for describing computations to people and to machines"[B1]
The world depends on programming languages, because all software running on computers was 
written in some programming language. In Introduction, we made a brief classification of 
programming languages. GPLs are the most common and the most used languages, but they can't 
always provide the needed abstractions. Thus, in search for some higher level of abstraction, we 
turn our eyes on languages that are closer to the domains of the problems that we're trying to solve.
We call these languages, domain-specific. Before we go further, let's see what DSLs are. In order to 
get a general understanding, we provide the following list of definitions : 

• "Domain-specific language (noun): a computer programming language of limited 
expressiveness focused on a particular domain" [B2]

• "A domain-specific language (DSL) is a programming language or executable specification 
language that offers, through appropriate notations and abstractions, expressive power 
focused on, and usually restricted to, a particular problem domain" [A1]

• "A domain-specific language (DSL) is a language whose purpose is to simplify writing 
programs for that problem domain" [A4]

• "DSLs are generally very high level languages tailored to specific tasks. They are designed 
to make their users particularly effective in a specific domain" [B3]

• "A Domain-Specific Language is a custom language that targets a small problem domain, 
which it describes and validates in terms native to the domain" [B4]

• "A DSL is a language designed to be useful for a specific set of tasks" [B5]

The key characteristics of DSLs according to these definitions are : effectiveness and problem 
domain specificity. DSLs help programmers (or domain experts)  in writing programs using idioms 
that are similar to the abstractions found in particular problem domains, making their work more 
effective. Consider the following example : 

SELECT * FROM Book 
WHERE price > 20.00
ORDER BY author;
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It's easy to recognize this as an SQL query. Just think of how you would implement this in a GPL, 
and also, do this over and over again. Also, how easy would it be to understand and modify that 
code, compared to an SQL query? Or what about regular expressions? Regular expressions and 
SQL are similarly specialized languages, designed for a narrow domain—text processing and 
database querying, and they both are focused on letting users express what they mean, instead of 
how some particular things should be implemented (i.e. how the implementation should work) [B6].

Different tasks (eg. low level hardware manipulation) must be done at different levels, but 
we, as developers strive for simple, readable and maintainable code. Also, computer programs can 
scale and turn into complex artifacts (eg. enterprise systems), which are hard to build, manage, 
understand and evolve. Existing software development paradigms don't always cope with 
challenges such as system size, domain complexity and software evolution, when considering such 
systems. In order to tackle some of these problems, we need to elevate program specifications. By 
raising the overall level of abstraction, DSLs make certain kinds of code easier to comprehend, 
write and modify thus, improving programmer productivity and increasing software quality. The 
code is easier to manage and analyze, and it's also less error-prone.

DSLs provide convenient abstractions, shielding application developers from much of the 
complexity and variability of explicitly programming in GPLs. Effective design of such abstractions 
requires close interaction between researchers developing such languages, and domain experts with 
a deep understanding of the problems to be solved. This issue is also the second definitive 
characteristic and benefit of DSLs : improving communication with domain experts. 

DSLs are usually small and easy to understand, allowing business people (i.e. non-
programmers) to see and directly comprehend the code that drives important parts of their business 
(i.e. code that implements their business rules). Thus, domain experts can communicate in a much 
more detailed fashion with the programmers who actually write the code. By exposing the real code 
to domain experts, we enable a much richer communication channel between programmers and 
their customers. "This communication with domain experts is a benefit more difficult to achieve, 
but the resulting gain is much broader because it helps unclog one of the worst bottlenecks in 
software development – the communication between programmers and their customers" [B2].

1.2   DSL Types
When referring to DSLs, we often distinguish between the textual and graphical types. We'll discuss 
those types in turn, and look at their properties and uses. But before doing that, we'll discuss the 
terminology used. 

The structure of a DSL is captured in its abstract syntax – also known as its metamodel. A 
metamodel is a model used to construct another model, where one model is expressed in terms of 
the other model (is an instance of that model).  Simply put, the metamodel is used to define a DSL's 
abstract syntax, leaving users of that DSL to create instance models out of it. The term abstract 
syntax refers to a metamodel, having a corresponding concrete syntax in the form of text or diagram 
notation, which are referred to as textual concrete syntax and graphical concrete syntax. A textual 
syntax let's users work with textual instance models (just like any other text-based programming 
language), whereas a graphical syntax enables its users to work with instance models using a 
diagram surface, the most popular being UML [B5].

1.2.1   Textual

When talking about textual DSLs, Fowler in [B2] distinguishes between internal and external DSLs.

5



Internal

Internal DSLs are built on top of existing GPLs, and use the syntax provided by these general 
languages. Internal DSLs are a stylized use of these languages for a domain-specific purpose, trying 
to express things in a way that makes sense to both the author and the reader, and not to the 
compiler. The expressiveness of an internal DSL is both influenced and limited by the constraints 
that are imposed by the underlying language syntax. The general language shouldn't be too rigid in 
its syntax in order to build such a DSL, so languages like Java and C# aren't a good choice. Instead, 
popular choices for building internal DSLs are dynamic languages like Lisp, Ruby or Python. These 
kind of languages have other features that are useful when building DSLs, like closures, macros or 
duck typing. The major advantage of an internal DSL is that it preserves the language environment, 
so for example, you won't need to redefine an if statement or operator precedence, because you 
have those in the host language. Another term by which internal DSLs are known, are embedded 
DSLs [B2, B6]. We will present an example of an embedded DSL in Chapter 2.

A variation of internal DSLs are the fluent interfaces. This term was coined by Eric Evans 
and Martin Fowler [W3, B2] to describe more language-like APIs (Application Programming 
Interfaces). Fluent interfaces are ways to structure your API so that operations flow naturally and 
provide more readable code. They are mostly valid only when used by developers during actual 
development, which limits their scope compared to other DSL types [B2, B6]. The central pattern of 
a fluent interface is that of Method Chaining. Our initial code (in C++) might look like this [W4]: 

class GlutApp{
//class implementation
};

int main(int argc, char **argv) {
     GlutApp app(argc, argv);
     app.setDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_ALPHA |GLUT_DEPTH);
     app.setWindowSize(500, 500);
     app.setWindowPosition(200, 200);
     app.setTitle("GlutApp");
     app.create();
}

We can create a new class, FluentGlutApp derived from GlutApp, in which each member function
calls the correspondent method from the base class and returns *this. For example, let's see the 
new method which sets the name of the application : 

FluentGlutApp& FluentGlutApp::named(const char *title) {
     setTitle(title); //from base class
     return *this;
}

Thus, we achieve Method Chaining and we can express the same thing as above, with [W4]:

class FluentGlutApp : GlutApp{
//class implementation
};

int main(int argc, char **argv) {
       FluentGlutApp(argc, argv)
         .withDoubleBuffer()

   .withRGBA()
    .withAlpha()
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   .withDepth()
         .at(200, 200)

   .across(500, 500)
         .named("GlutApp")
         .create();
}

The greatest benefit of internal DSLs is that they are "end user readable". But, it's also important to 
know the limitations of internal DSLs. When using them, you are constrained by the host language, 
and any expression must be a legal one with regard to the (base) language. Thus, you must analyze 
this option with care, especially if you're going to use them extensively in a large project. 
Otherwise, spending some time in creating an external DSL may pay off, over the life of a project. 

External

External DSLs are written in a different language than the host language of the application, and are 
transformed into it using a compiler or interpreter. These are required because external DSLs have 
custom syntaxes. External DSLs differ from internal DSLs in that the parsing process operates on a 
text input which is not constrained by any particular language.

When building a new DSL, we should give it its own unique and individual syntax, in order 
to provide language constructs which are designed with both the problem domain and the target 
audience in mind. We would use an external DSL for specifying languages that are too far afield 
from existing programming languages. SQL and regular expressions are two common examples of 
external DSLs. They couldn't be built as internal DSLs because they differ too much from general 
languages, so external DSLs would be the right approach for writing our own SQL dialect or 
custom regular expressions. 

Next,  let's see another example. Imagine you are trying to simulate in a very simple manner, 
the movement of a robot. First, you need to set up the board on which it moves, a starting position 
and the position and size of the camera. Then you can move it up, down, left, right or at a certain 
position. An usage scenario of this language might look something like this:

Set board: 30x30 squares of 10 units.
Set camera size: 400 by 300 pixels.
Set camera position: 10, 20, 10.
Set initial position: 0, 0. 
Move up.
Move down.
Move left.
Move right.
Move up 3 times.
Move down 2 times.
Move to 20, 20.

Fragmentary and Stand-alone

We introduce here two ways in which DSLs may appear: fragmentary and stand-alone [B2].
The last example we showed (the movement of the robot) is a stand-alone DSL. Basically, 

you look at a block of DSL script (usually a single file) and it's all DSL. Someone who is familiar 
with the DSL but not with the base language of the application, should understand what it does 
because, the host language isn't present (for an external DSL) or is suppressed by the internal DSL.
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Another way DSLs appear is in a fragmentary form. In this form, pieces of DSL code are 
intermingled with host language code so, without understanding the base language you can't follow 
what the DSL is doing. The already ubiquitous examples are SQL and regular expressions. For 
example, you don't have a whole file with regular expressions, but instead, you have little snippets 
which are mixed with the regular host code. You can think of them as enhancing the host language 
with additional features. Same applies to SQL – if used with a GPL, you write SQL statements in 
the context of a larger program. SQL is a good example of DSL which can be used in both stand-
alone and fragmentary contexts.

1.2.2   Graphical

Graphical DSLs use shapes and lines to express intent rather than using text. A good example is 
UML, a DSL for describing software systems. You model your problem in UML and from that, you 
can generate the rest of the application. Figure 1 displays a small part of a typical UML diagram.

Customer
Id : long
Name : String
Address : String
Orders : Set<Order>

AddOrder(order : Order) : void

Figure 1. UML Class Diagram Displaying The Customer Object

Graphical DSLs help you express a lot of information in a concise way, making it much easier to 
understand a problem by seeing it, than when it's explained in words. This approach also allows a 
higher level communication because of the limitations of the image, making it much easier to 
understand what's going on when you see the big picture [B6].

A lot of effort has been put to make it possible to write your own graphical DSLs. A 
framework which lets you build tools similar to the class designer and generate code with them, is 
Microsoft's Visual Studio DSL Tools. Let's start with an example that captures data for deploying 
and managing distributed applications. Figure 2 shows a simple model built using a graphical DSL 
(which is part of Visual Studio 2005 Team Architect) for designing logical data centers. The 
elements of this language include zones – the rectangular areas surrounded by dashed lines, hosts – 
the rectangular areas surrounded by solid lines, endpoints – the small shapes (squares, circles and 
hexagons) placed on the edges of hosts, and connections – the arrows between endpoints. We can 
build up graphical DSLs like this one from a set of simple diagrammatic conventions (many of them 
being derived from UML) [B4].

All these are great, but they all share common problems inherent to the graphical DSL 
model. Graphical DSLs hide information that you don’t want to see, so you can view the big 
picture. But by doing so, you can't see the whole at the same time, forcing you to spend a lot of time 
browsing between various elements on the DSL surface. Also these DSLs need a lot of screen space 
to express notions that would take only a few lines in a textual DSL. Then again, operations like 
search and replace are difficult. More than that, difficulties appear when working with graphical 
DSLs in a team environment. Comparing two versions of a file isn't an easy task at all, and it 
usually breaks down, making it a problem in terms of source control [B6].
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Figure 2. Data Center Design [B4]

1.3   Opportunities and Drawbacks
After seeing what DSLs are, we might ask ourselves what can we gain from using them. DSLs 
provide limited focus (opposed to object orientation for example), and are a specific tool for very 
particular conditions. Thus, a project might use several DSLs in various places. As we already said, 
DSLs aren't more than a facade over a library (or a framework), so we should separate the benefits 
provided by the two. DSLs have certain advantages and before deciding to use them, we must 
consider with care which of these benefits are applicable to our circumstances. Next, we present 
some of the advantages [B2, B4, A1]: 

• DSLs enhance quality, productivity, reliability, maintainability, portability and reusability
• DSLs allow solutions to be expressed in the idiom and at the level of abstraction of the 

problem domain
• DSLs give the ability to work in terms of the problem space, with less scope for making the 

errors that come from representing it in a general-purpose language
• Models are made more accessible to people not familiar with the implementation 

technology, including business people. Domain experts themselves can understand, validate, 
modify, and often even develop DSL programs

• Improve communication with domain experts and between roles in a development team
• DSL programs are concise, self-documenting to a large extent, and can be reused for 

different purposes
• DSLs embody domain knowledge, and thus enable the conservation and reuse of this 

knowledge
• DSLs allow validation and optimization at the domain level. Errors in understanding or 

representation can be picked up much earlier in the development lifecycle, so as long as the 
language constructs are safe, any sentence written with them can be considered safe

• Models can be used to simulate a solution directly, providing immediate feedback on the 
model's suitability

• Models can be used to configure an implementation consisting of multiple technologies of 
different types, which can reduce the skill and effort required to implement a solution using 
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these technologies
• Models can also be used to generate other models, and to configure other systems, networks, 

and products, perhaps in combination with other enabling technologies such as wizards

Adopting a DSL approach to software engineering involves not only opportunities, but also risks.
Some of the disadvantages are [B2, A1] :

• The costs of designing, implementing and maintaining a DSL 
• The costs of education for DSL users
• The limited availability of DSLs (ghetto languages) – eg. companies which develop 

languages which are not used anywhere else (they're only for in-house use), making it 
difficult for them to find new staff and to keep up with technological changes

• Proliferation of similar, non-standard DSLs
• Lack of proper tooling (Integrated Development Environments (IDEs), debuggers, etc)
• The difficulty of finding, setting, and maintaining the proper scope for a DSL
• The difficulty of balancing between domain-specificity and general-purpose programming 

language constructs
• The potential loss of efficiency when compared with hand-coded software

There is a cost involved in learning a new language in order for people to understand the code, but 
we argue that it's a lot easier to understand a code written in a good DSL, than it is to understand 
GPL code that is poorly written, because the language doesn't have sufficient abstractions for the 
domain problem.

1.4   Examples
DSLs are definitely not something new. Hundreds of them exist today, but of these, only a subset is 
described in software engineering literature and used on a larger scale. The most common are 
classical examples like LEX, YACC, (E)BNF, VHDL, sed, grep, Make, TeX, CSS, HTML, regular 
expressions, spreadsheet formulas and macros, and SQL, just to name a few. The most known DSLs 
and their application domains can be viewed in Table 1. 

DSL Name Application domain
SQL Database queries

HTML Hypertext web pages
Excel Spreadsheets
LaTeX Typesetting 
BPEL Business processes

(E)BNF Syntax specification
Make Software building
VHDL Hardware design
YACC Creating parsers

Table 1. Some Widely Used Domain-Specific Languages
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Other well-known examples and somewhat newer DSLs are Graphviz's Dot language, LINQ, HQL, 
XQuery, XPath, XSLT, XML Schema, DTD, JavaDoc and SVG. 

At the beginning of this chapter we provided an example of an SQL query. To see another 
DSL  example, we introduce Graphviz [A6], an useful package for manipulating graphs and their 
drawings. Figure 3 shows an example of a finite state machine. 

Figure 3. Dot Drawing Of A Finite State Machine [A6]

To create this diagram, you need to write the following code in the DOT language (which is an 
external DSL) [W1] :

digraph finite_state_machine {
rankdir=LR;
size="8,5"
node [shape = doublecircle]; LR_0 LR_3 LR_4 LR_8;
node [shape = circle];
LR_0 -> LR_2 [ label = "SS(B)" ];
LR_0 -> LR_1 [ label = "SS(S)" ];
LR_1 -> LR_3 [ label = "S($end)" ];
LR_2 -> LR_6 [ label = "SS(b)" ];
LR_2 -> LR_5 [ label = "SS(a)" ];
LR_2 -> LR_4 [ label = "S(A)" ];
LR_5 -> LR_7 [ label = "S(b)" ];
LR_5 -> LR_5 [ label = "S(a)" ];
LR_6 -> LR_6 [ label = "S(b)" ];
LR_6 -> LR_5 [ label = "S(a)" ];
LR_7 -> LR_8 [ label = "S(b)" ];
LR_7 -> LR_5 [ label = "S(a)" ];
LR_8 -> LR_6 [ label = "S(b)" ];
LR_8 -> LR_5 [ label = "S(a)" ];

}

This example shows how to use nodes and arcs to create a graph. Nodes are declared with the node 
keyword, and arcs using the -> operator. Both nodes and arcs can be given attributes listed between 
square brackets. Though not shown in the example, Graphviz has many more useful features for 
diagrams such as options for colors, fonts, tabular node layouts, line styles, hyperlinks and custom 
shapes.
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The examples presented above are the most known and used ones, but there are various other DSLs 
covering a wide range of application domains, which can be grouped into the following areas:

• Software Engineering: Detection of code clones [A18], processing ad hoc data [A25], 
evolutionary algorithms [A39, A40], refactoring [A32]

• Systems software:  Video device drivers specification [A13], real-time embedded and 
control systems [A19, A27], programming high-performance server applications [A26], 
form-based services [A34], distributed systems [A41]

• Security: Network monitoring and network intrusion detection [A23,  A30, A31, A9, A46], 
vulnerability analysis on a network [A38], specification of security protocols [A43, A47], 
cryptographic algorithms [A44], secure multi-party computation [A48], access controls 
[A42], digital forensics [A14, A15], enforce security policies on web services [A28, A29], 
semantic web security [A33], securing distributed systems[A24], specify SELinux policies 
[A35,  A36], covert channels [A49]

• Multi-Media: Modeling of two-dimensional games [A7], representation of two-dimensional 
pictures [A37]

• Telecommunications: Mobile applications development [A10, A11, A12, W3], internet 
telephony services [A16, A17], network performance testing [A45]

• Environment: Modelling of processes that occur in landscapes [A22], Agriculture [A8]
• Miscellaneous: Mathematical equation specification [A20]

1.5   Design Methodology
[A1] presents the steps involved in developing a DSL:

Analysis 
1. Identify the problem domain
2. Gather all relevant knowledge in this domain
3. Cluster this knowledge in a handful of semantic notions and operations on them
4. Design a DSL that concisely describes applications in the domain

Implementation 
5. Construct a library that implements the semantic notions
6. Design and implement a compiler that translates DSL programs to a sequence of library 

calls

Use
7. Write DSL programs for all desired applications and compile them

The analysis phase is meant to build up a thorough understanding of the underlying application 
domain. For acquiring such an understanding, researchers (domain analysts) provide guidelines by 
investigating ways of modeling domains. For a well designed DSL, these domain analysts should be 
persons with a lot of background experience in the same problem area, to be able to examine the 
needs and requirements of a collection of similar systems. 

The implementation phase requires the construction of a library which should implement the 
semantic notions provided from the first phase, and the building of a compiler which should 
translate DSL scripts into library calls. Essentially, DSLs aren't much different than libraries; "most 
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DSLs are merely a thin facade over a library or framework" [B2]. Class libraries are reusable 
implementations of tasks in a certain domain. The library is used based on the provided API which 
can be viewed as a "language" for using the library implementation. The syntax of this "language" 
is based on the syntax of the used GPL, which is limited in expressing domain-specific concepts in 
a natural manner. So, why bother developing DSLs? Simply because they provide domain 
specificity better. In most cases, DSL programs are translated to library calls and the DSL can be 
viewed as a means to hide the details of that library. DSLs can provide great benefits (as seen in 
subchapter 1.3),  and should be considered more often. "The facade may be thin, but it is often 
useful and worth building" [B2].

The last phase implies the creation of DSL programs for the needed applications, and the 
compilation of these instances, which results in sequences of library calls.
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Chapter 2

Genesis Library

2.1   Overview
As we saw in Chapter 1, DSLs are languages that target a specific kind of problem or domain. 
Although used with success in various areas, they are not widely used in general purpose 
applications mainly because the popular widely used languages today do not make it easy. The 
syntax of a GPL does not always allow the appropriate notation and composition of domain 
concepts. GPLs provide limited facilities for expressing domain-specific concepts in a natural 
manner, and all domain concepts need to be captured using the same generic syntactic and semantic 
constructs. Also, developing a DSL usually requires a mature domain knowledge and language 
development expertise, few people having both. Most people consider that creating your own 
computer language is a fairly complex matter, because most of the literature assumes that you want 
to build a complete and mature general language, which is not always the case. Because of that, 
DSLs are considered at the final stage of the evolution of an object-oriented application or are not 
considered at all – never getting beyond the application library stage. We consider this an unhealthy 
approach, because of the potential advantages (as seen in subchapter 1.3) resulting from the use of 
DSLs, especially for medium and large applications. We try to overcome the aforementioned 
shortcomings by providing Genesis, a C++ library which facilitates the ease of development and 
use, of textual DSLs. 

With Genesis, all you have to do in order to create a new language is to specify its grammar 
and what should each of its rules generate when matched. Based on this grammar, Genesis 
generates and builds the parser that will be used to make the matchings and transformations. In this 
new language the user writes pieces of code, which he then uses as stand-alone or fragmentary (as 
seen in subchapter 1.2.1). Either way, after he has written some code, he again uses Genesis to parse 
these code snippets (with the built parser). The parser tries to match the rules of the grammar on this 
input and generates the appropriate output (specified when the grammar was built). The resulting 
text can then be used as is, or compiled with a specific GPL. This way, you can code your 
application in an existing GPL, and use Genesis to overcome the lack of abstraction in the general-
purpose language. The solution for code generation is language independent, so we can generate 
any kind of output, from plain text to code targeting any kind of GPL. 

Code generation is not always enough. Especially when using a DSL in a stand-alone form, 
you may want that code to be interpreted in a certain way, not necessarily generate something. 
Genesis lets you do that by allowing you to assign semantic actions to rules and subrules. When 
parsing,  whenever such a component is matched, it will execute the semantic action first and then 
move on with the parsing. Thus, with the semantic actions functionality, the parser generated with 
Genesis acts like an interpreter for the defined language. Genesis is based on C++, so the semantic 
actions also have to be written in C++. 

The motivation for choosing C++ is that it's extremely fast and it allows us to work both at a 
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high level and at a low level. These aspects are very important, making C++ the language of choice 
in developing cutting-edge software solutions. Still, C++ is a GPL and shares the aforementioned 
problems of GPLs, an insufficient level of abstraction and limited capabilities in expressing 
domain-specific concepts in a natural manner, and we may often feel the need to express solutions 
to some problems at a much higher level. Our vision is that we don't need to extend the C++ 
language to be able to do that, but, create custom constructions which express better the domain-
specific concepts, mix them with C++ code the way we want, and then translate them into the host 
language. And this is exactly what Genesis does, as presented above. This way we can enhance C++ 
with different capabilities that aren't provided by the base language. More than that, we provide 
Genesis in the form of a library because other persons might want to use it in their development 
environments in a custom way (eg. as an IDE plugin) or build new IDEs for it.

There are many practical reasons why programmers would want to modify the language that 
they uses: to add constructs that better express their algorithms, to add constructs other languages 
have that they see as useful, and to reduce boilerplate code and repetitive patterns. All these features 
can be achieved with Genesis. Just think at large applications with hundreds of thousands or 
millions of lines of code (eg. enterprise applications or operating systems), and how much 
boilerplate code they contain. The repetitive patterns reduce the quality of the source code, and to 
eliminate them we use generative techniques (and among others, source code generation – which is 
possible with Genesis). 

An argument for not using internal DSLs is the concern for proliferation of ad-hoc 
languages, designed by people with no clue, mixed in the same source code. But this does not stand, 
because if you change the "ad-hoc languages" with "libraries" you get the same effect. Designing a 
language is not very different than designing an API of a library. Good API designers will also 
design good languages, whereas bad designers will mess things up both ways. Also, some may 
argue that we should prefer libraries instead of language extensions, but why not have both? Why 
not exploit language extensions in our favor? Just like for an API, if you have it documented, it's 
easier to read and understand the rules of the grammar. The motivation for designing languages is 
that they provide syntax flexibility compared to libraries.

We said that DSLs are good for code noise reduction, and by doing this we enhance the 
quality of the source code. More than that, if we reuse various pieces of source code by copy 
pasting and not using generic techniques, we will most likely create unwanted and also not easy to 
spot defects. Thus, with DSLs, by hiding irrelevant technical details and using the technique of 
source code generation we also create a more secure code. The rules of the DSLs will be single 
points of failure and if the logic of the application fails when it gets to them, then the error will 
propagate to each of the code instances that match these rules, and will be easier to trace the bugs.
So, the idea is to apply a generic solution for the same problem. Also it's easier to change the 
implementation of the defined constructs; this change will propagate throughout the code instances.

The last aspect that we need to talk about when considering using Genesis is the 
improvement of communication with domain experts and between roles in a development team. A 
DSL uses terms and concepts that map directly to the problem space, simplifying communication 
between business and technical project participants. With a tool like Genesis we empower persons 
who are not traditional programmers, with the ability to create their own software solutions. 
Programmers can create DSLs, which can then be used by domain experts. Thus, the latter, who 
have a strong understanding of a problem domain but no formal computer programming training, 
could submit useful code artifacts at any time, or write software applications to solve a specific 
need in their daily work tasks.

A DSL is intended to overcome the syntactic limitations of a particular language by 
extending it. And that's where the parser is needed – it parses and interprets the user-defined 
constructions. Genesis relies havily on the Boost.Spirit parser generator, so in the next subchapter 
we talk about it.
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2.2   Spirit Parser Framework
In subchapter 1.2.1 we said that we will provide an example of a Domain-Specific Embedded 
Language (DSEL), so we talk here about the Spirit parser framework. This subchapter will be based 
on [W5] and [W6] which are the main Spirit references.

Spirit is part of Boost Libraries[W7], a peer-reviewed, open collaborative development 
effort. "Boost Spirit is an object-oriented, recursive-descent parser and output generation library for 
C++. It allows you to write grammars and format descriptions using a format similar to Extended 
Backus Naur Form (EBNF) directly in C++. These inline grammar specifications can mix freely 
with other C++ code and, thanks to the generative power of C++ templates, are immediately 
executable. In retrospect, conventional compiler-compilers or parser-generators have to perform an 
additional translation step from the source EBNF code to C or C++ code." [W6]. 

Spirit exposes 3 different DSELs to the user, each of them contained in a separate module :
• For creating parser grammars (Parsing Expression Grammar (PEG)) – Spirit.Qi
• For the specification of the required tokens to be used for parsing (Regular expressions) – 

Spirit.Lex
• For the description of the required output formats (Reverse PEG) – Spirit.Karma

The input grammar and output formats, are written entirely in C++ so we don't need other tools to 
compile, preprocess or integrate those into the build process. Both the created parsers and 
generators are fully attributed, which allows us to easily build and handle hierarchical data 
structures in memory. 

The three Boost.Spirit components can be used in a stand-alone form or together. Normally, 
a token sequence generated by Spirit.Lex is used as input for a parser generated by Spirit.Qi, and 
the hierarchical data structures generated by Spirit.Qi can be used for the output generators created 
using Spirit.Karma. Figure 4 shows the typical data flow of some input being converted to some 
internal representation. After some (optional) transformation these data are converted back into 
some different, external representation. The figure highlights Spirit's place in this data 
transformation flow. 

Figure 4. Spirit.Qi and Spirit.Karma In a Data Transformation Flow Of A Typical Application
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Spirit.Qi is Spirit's sublibrary dealing with generating parsers based on a given target grammar 
(essentially a format description of the input data to read). Next, we provide a grammar snippet in 
EBNF to define a calculator :

group       ::= '(' expression ')'
factor      ::= integer | group
term        ::= factor (('*' factor) | ('/' factor))*
expression  ::= term (('+' term) | ('-' term))*

The same code can be expressed in Spirit.Qi as follows :

group       = '(' >> expression >> ')';
factor      = int_ | group;
term        = factor >> *(('*' >> factor) | ('/' >> factor));
expression  = term >> *(('+' >> term) | ('-' >> term));

As we can see, there aren't major differences between the two snippets: * and + operators must 
precede the operand, and >> operator is used instead of sequence operator in EBNF (which is 
denoted as single space character). The reason is that C++ operator overloading puts limits on how 
the operator is overloaded and what could be used as operator in the first place. int_ is a Spirit 
parser which matches an integer.

As we said earlier, Spirit permits creating PEG grammars in C++. "Parsing Expression 
Grammars (PEGs) provide an alternative, recognition-based formal foundation for describing 
machine-oriented syntax, which solves the ambiguity problem by not introducing ambiguity in the 
first place. Where CFGs express nondeterministic choice between alternatives, PEGs instead use 
prioritized choice. PEGs address frequently felt expressiveness limitations of CFGs and REs, 
simplifying syntax definitions and making it unnecessary to separate their lexical and hierarchical 
components. A linear-time parser can be built for any PEG, avoiding both the complexity and 
fickleness of LR parsers and the inefficiency of generalized CFG parsing." [A50]

Like EBNF, PEG is a formal grammar for describing a formal language in terms of a set of 
rules used to recognize strings of this language. Unlike EBNF, PEGs have an exact interpretation. 
There is only one valid parse tree (Abstract Syntax Tree) for each PEG grammar. In PEG, in case of 
ambiguity where one or more branches can succeed, the first case always wins (the first branch 
which is successful). A crucial difference between PEG and general Context Free Grammars 
(CFGs) is that in PEG, loops behave greedily. If we try to match a sequence of 'A's and there is 
another 'A' just before the end-point, it will always fail because the preceding loop has already 
exhausted all 'A's and there is nothing more left. Table 2 presents PEG and (their equivalent) Spirit 
operators. 

Description PEG Spirit Qi
Sequence a b a >> b

Alternative a | b a | b
Zero or more (Kleen) a* *a
One or more (Plus) a+ +a

Optional a? -a
And-predicate &a &a
Not-predicate !a !a

Difference a - b
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Expectation a > b
Semantic action a[f]

List a % b
Permutation a ^ b

Sequential Or a || b
Character set negation ~a

Table 2. PEG versus Spirit Qi Operators

Spirit is implemented as a DSEL using expression templates [A51] and template meta-programming 
[A52]. Template metaprogramming is a metaprogramming technique in which templates are used 
by a compiler to generate temporary source code, which is merged by the compiler with the rest of 
the source code and then compiled. The output of these templates include compile-time constants, 
data structures and complete functions. The use of templates can be thought of as compile-time 
execution. Expression templates is a template metaprogramming technique in which templates are 
used to represent part of an expression. Typically, the template itself represents a particular type of 
operation, while the parameters represent the operation to which the operation applies. The 
expression template can then be evaluated at a later time or passed to a function. The purpose of 
expression template is to inline expressions during compilation, which produces faster and more 
readable code. The Spirit libraries enable a target grammar to be written exclusively in C++. Inline 
grammar specifications can mix freely with other C++ code and because of the generative power of 
C++ templates, are immediately executable.

Expression templates and template meta-programming are powerful tools for designing 
highly generic libraries like Spirit, but they don't come for free. One of the problems is the 
compilation time. Because Spirit pushes the compiler to its limits, expect slow compilation times, 
especially on complex grammars. Another problem are the compilation errors. When some aspect of 
our grammar written in Spirit fails, we often get errors which run to multiple pages of impenetrable 
garbage. The complex templatised code used with the Spirit library causes the compiler to report the 
error, as each layer of templatised code is unwrapped, making it hard to spot the defect.

The Boost.Spirit library contains an impressive suite of classes to make the creation of 
object oriented parsers both quick and clean. It has the advantage of being very quick and easy to 
use without having to pre-process grammar files or auto-generate code using external tools. In order 
to implement the library, the programmers have used many cutting edge features of ANSI Standard 
C++, so the library has its problems, most notably impenetrable error messages and slow 
compilation times. Nevertheless, it is worth using it for its advantages, and mainly for the clean 
definition of parsers which makes it a definite candidate for writing parsers easily.

The current Genesis version uses only the Qi component, so whenever we talk about 
Boost.Spirit or just Spirit further on in the thesis, we actually refer to the Boost.Spirit.Qi 
component. Also, the Qi components can be found in boost::spirit::qi namespace; for 
simplicity we'll use qi:: followed by the Qi component we refer to.

2.3   Design
In subchapter 2.1 we briefly introduced the working steps of Genesis. In this subchapter we present 
them in detail (but not too much details, because it's beyond the purpose of this thesis), 
accompanied by an example of usage. Figure 5 will be our main reference. 
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Figure 5. Genesis Working Steps
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At the top of Figure 5 we have two labels, the user's view and background processes, to know what 
the user sees and what happens in the background. Below them, in blue are displayed the resources 
(used or generated), near them, in yellow are presented their structures, and the green circles show 
the order of the working steps. Between resources are arrows with labels on them, indicating the 
actions that are executed in order to transform one resource into another.

A user who wants to use Genesis must first create the grammar of his DSL (the green circle 
with value 1). The ClassGen.dsl file which implements a new grammar for particular class 
generation, comprises of a rule, Init, which matches a pair of square parantheses with an identifier 
between them. When the identifier is matched, a semantic action is executed (the function f()), and 
if the whole rule is matched, then this rule will generate a new class definition based on the 
identifier. The structure of a .dsl file will be analyzed in detail in the following chapter.

The second step is to create the source code of your application, and mix it with code of the 
newly created DSL. You don't need to use Genesis from the beginning of a project, you can use it at 
any step of your application's lifecycle. Just create the DSLs you need and use them in your source 
code as shown in the example, with: use "DSL-file" as tag;- this indicates that tag will use 
the DSL defined in DSL-file. Throughout the source code, we can use the DSL by attaching snippets 
of the following form : <%tag dsl-instance %>; . Tag indicates the DSL (from DSL-file) that 
dsl-instance should match. 

The third step is separated into two. First, we use Genesis to generate code for a Boost.Spirit 
parser out of the DSL definition and then, this code is built with a C++ compiler (this version 
supports only gcc/g++) which creates a binary parser. Along with the generation of the parser, there 
is also generated a storage file (has the .gs extension). This is a serialized instance of 
GeneratorStorageStatic or GeneratorStorageDynamic classes. These classes contain the 
code that is to be generated when a rule is matched. The serialization is made using the Serialization 
library from Boost [W7].

In the forth step we use the binary parser to parse the source code mixed with DSL code. 
The DSL code is matched by the appropriate parser and Genesis constructions throughout the code 
are consumed. If using semantic actions, the parser is run twice. First it parses for correctness and 
then it does the actual matching, generates code and executes semantic actions. 

The fifth step which results from parsing is actually the output, and it comes in two possible 
ways (the green circles marked with 5a and 5b). First, we can generate code by replacing the dsl-
instance occurences with the matched rules code – remember that we said that when a DSL rule is 
matched, we consume the input tokens and replace them with a certain code that we defined for that 
particular rule (eg. Init rule in our example will generate a custom class definition). Aside code 
generation, we also have the semantic actions utility. In ClassGen.dsl we saw that after matching 
the identifier, we execute a semantic action whose behaviour is defined in function f(). In our 
example, when matching the DSL instance <%cg [Student] %>; , the function f() will be 
called, with "Student" as string data, and it will print on screen "Generated class: Student". 
Obviously, there could've been a more complex behaviour, but this is just an example that shows 
how Genesis facilitates the creation and use of DSLs. 

If we use Genesis without semantic actions, we can think of it as being a code generator. If 
we use only the semantic actions, then it acts like an interpreter for the provided code. Thus, we can 
think of Genesis that it facilitates the creation and use of internal DSLs when used as a code 
generator or external DSLs when used as an interpreter. Our initial vision was to exploit the power 
of C++, allowing it to intermingle with user defined higher level languages, which would translate 
into C++ code when processed. Genesis does more than that because its code generation 
functionality is language independent, meaning that we can generate any kind of text, independently 
of the base language. Only when we want to execute additional actions we use C++ in order to 
define the behaviour of semantic actions, which are nothing more than C++ functions being called. 

Using a DSL this way can often make up for limitations in a host language, allowing us to 
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express things in a comfortable DSL and then generate code that's used by the actual execution 
environment. Obviously, DSLs don't solve and are not intended to solve all our problems, and we 
should know when it's appropriate to use them. So, when should we consider making a DSL? 
Usually, when an aspect of a system is rich in business rules or work-flow. A well-written DSL 
would allow customers to understand the rules by which the system works. This isn't going to lead 
to a "cacophony of languages" [B2] which will be hard to learn because, we already have a 
cacophony of libraries and frameworks that programmers have to learn. As said in Chapter 1, a DSL 
is nothing more than a facade over a library or framework and as a result, they contribute little 
complexity over what is already there. A good DSL should make things better by making these 
underlying libraries and frameworks easier to use. Also, with Genesis it's really easy to create DSLs 
because all the user has to do is to learn the (close to EBNF) syntax allowed and specify what 
should the rules (he defines) generate. The learning curve is fast and the advantages can be much 
bigger than the time spent on learning how to use this tool.

21



Chapter 3

Implementation

In the previous chapter we saw an introduction of the Genesis library, its design, and a motivation 
on why should someone use this tool. This chapter covers Genesis' implementation in detail.

3.1   Genesis API
Genesis comes in the form of a library (with the motivation presented in the previous chapter), so 
we must first talk about the functions it exposes – its API. We will present each of the files that can 
be included into an application that wants to use Genesis, and what they expose, briefly. The 
functionality exposed by the library can be used by accessing the namespace genesis (eg. the 
current Genesis version can be accessed by genesis::GENESIS_VERSION) – for simplicity we 
won't mention it further on.

GenesisBerry.hpp
This is the main file we need to include, to be able to work with Genesis. It provides the 
GenesisBerry class which exposes the following methods :

• InitProjectConfig – This is the first function that must be called when wanting to work 
with Genesis. It takes a configuration file, parses it and updates the global ProjectConfig 
structure (see ProjectConfig.hpp below). These configurations are used later on to generate 
the parser, build it, and generate code when processing the source file

• GenerateDslParser – This function first parses the specified DSL file, generates the 
source code for a Boost.Spirit parser and builds it, resulting in a binary parser

• PreprocessStringSource and PreprocessFileSource – Parses the source code for 
occurences of the following form :  use "DSL-file" as tag;  
(see PreprocessReturnStruct.hpp below)

• GenerateCodeFromFileToFile, GenerateCodeFromFileToString, 
GenerateCodeFromStringToFile and GenerateCodeFromStringToString – 
These functions use the built parser to process the source code and generate appropriate 
code (as specified in the definition of the DSL) and/or execute the appropriate semantic 
actions. The functions differ only in the parameters they take just like their names say – the 
source and the output can be either a string or a file

Each of these functions returns an int – 0 for no errors, 1 for errors.
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ProjectConfig.hpp
Exposes the ProjectConfig Structure. In order to work, Genesis relies on a configuration file 
(config.gsis) which keeps all the configurations for a project: working directory, compiler, compiler 
path, compiler build options, aditional include directories, a map for dsl-to-binary bindings and 
paths to some extra header files. The map of bindings is needed in order to link DSL files to their 
corresponding binary parsers. The extra header files are used when generating the source code for 
the parser. Genesis uses all this options in the same way an IDE does, except that in the IDE we can 
select all these options from a graphical user interface, whereas here we have to edit the 
configuration file in a text editor.

PreprocessReturnStruct.hpp
Exposes the PreprocessReturnStruct structure. This keeps two fields: code and used_tags. 
Code is actually the remaining source code after the source file was preprocessed for occurences of 
this kind: use "DSL-file" as tag; . When found, we insert a new key-value pair into the 
used_tags  map with DSL-file as key and tag as value. This line actually links the tag to the 
the DSL found in the DSL-file.

LastError.hpp
Exposes gsisLastError which keeps the last error (if any). This is actually an uError structure 
defined in ulib (an utility library Genesis depends on). This structure has 3 fields: the actual error 
message (a string), the error code (a long) and a vector of boost::any (can store any type). The last 
field is useful for two main reasons – we can store warnings or less important error messages or 
solutions in order to solve the current error, OR before we return from the place where the error 
happened, we can store into this vector the state of the program in that point (local variables, etc) 
which will help the user remedy the error faster (without this vector, the programmer must define its 
own global data structures to keep additional information about the error and program state, which 
makes programming more difficult).

version.hpp
Exposes GENESIS_VERSION, the current version number of Genesis.

genesis.hpp
Include this file into your source code if you want to include all of the above headers in one step.

In the same package we can also find GenesisCLI – a command line interface application which 
uses the exposed Genesis library functionality. For now, this is enough to demonstrate how Genesis 
works but, in the future, the library should be integrated in an IDE. 

3.2   DSL Structure
In Listing 1 we can see the structure of a default DSL file. It comprises of 3 main sections: 

Header
This part is used if we want to include some C++ code into the same file as the parser source code. 
Anything you type after %header and until %globals will be copied verbatim into that source file, 
so no processing or error checking is made (this is made by the compiler when building the parser). 
This section is optional. 
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Globals
Anything that is typed between %globals and %grammar will be copied verbatim into a .cpp file, 
and this source will be included (with #include) in the main parser source code. Just like with the 
header, no checks are made here (the compiler does them when building), and this section is also 
optional.

Grammar
This is actually were we define the grammars of our DSLs. This part starts with the keyword 
%grammar and requires a grammar name and the name of the start rule. These are needed for when 
we generate the Spirit parser – Spirit defines its grammars in classes (so we need a name for them) 
and also needs the grammar start rule, to know where to start. Also between the two we must put the 
'@' symbol, and the line must end with a semicolon. Below, we can start defining grammar rules.

A rule looks like this: it starts with a rule name, then an '=' must follow, then the actual 
definition of the rule (other rules or subrules – we'll see the allowed syntax in subchapter 3.3) , and 
then specify what to generate. This is done between '<%' and '%>;'  and we write the text to be 
generated when the rule is matched. 

%header 
//C++ code

%globals
//C++ code

%grammar GrammarName@start_rule;
//rule definitions
rule_1 = r_11 r_12 ... r_1i <% string to generate when rule is matched %>;
....
rule_m = r_m1 r_m2 ... r_mj <% string to generate when rule is matched %>;

Listing 1. DSL File Structure

After %grammar, we can put C or C++ comments anywhere in text, they will be completely 
ignored. The only place where they are not allowed is between '<%' and '%>;' because everything 
that's in between is copied as is. Also there are some other things you need to be careful about:

• %header takes the text that follows in a verbatim way and stops when it finds %globals 
(so everything you put there will be copied as is). Same applies to %globals  which will 
take everything until it encounters %grammar

• The start rule must not be defined as a rule separately (if you want to give it a custom 
definition do it there – we'll see how, later on)

• There should be at least one rule defined 
• Rules must not be redefined
• There should be at least one space between the last subrule and '<%'
• What's between '<%' and '%>;' will be generated as is (spaces, newlines, etc, will be kept 

unchanged)
• Identifiers (grammar name, start rule name, name of rules) must start with a letter or with an 

underscore and can continue with letters, underscores or digits. Identifiers are case sensitive!
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3.3   Allowed Syntax
We've seen in the previous subchapter what's the structure of a DSL file, but haven't talked about 
how to write rules. This is what we do in this subchapter – present the allowed syntax for rules. 

Genesis generates a parser (the part of a compiler that tries to make syntactic sense of the 
source code) based on an analytic grammar written in a notation similar to EBNF and regular 
expressions. We saw in Listing 1 that when we want to define a rule, we write its name, put the 
equal sign and start defining what it matches – its subrules or components. Basically, the user 
defines a grammar in Genesis syntax, but in the background this is translated into an equivalent 
Spirit grammar. The intention of this chapter is not to show how Spirit works, but to present how 
Genesis works, and what its subrules translate into – the equivalent Spirit parser components 
(we can find references to them in [W6] which is also our main reference). 

3.3.1   Literals

The literals we try to match must be put either between ' ' or " ". This matches a single character 
or a string of characters, and in Spirit it translates to qi::lit('') or qi::lit(""). For example 
"test" is a literal parser which matches the string test. '' and "" (empty literals) don't make sense 
and are not supported by Genesis – this would mean "match an empty string", but this is always true 
(we have an infinite number of empty strings in the text we process) and the result is that the parser 
will never stop. 

A special case with literals is when we want to match ' or " as literals. To match ' we must 
put it between "" and to match " we must put it between ' '. For example, if we want to match the 
string this " is a ' test, we can write a rule like this : 

rule = "this " '"' " is a " "'" "test"

3.3.2   Bracket Expressions

[ ] – is a bracket expression, and it matches a single character that is contained within the 
brackets. For example [abc] matches "a", "b" or "c". [a-z] specifies a range which matches any 
lowercase letter from "a" to "z". These forms can be mixed: [abcx-z] matches "a", "b", "c", "x", "y" 
or "z", as does [a-cx-z]. A bracket expression of this kind translates into qi::char_(""), 
which takes as a parameter a string – the pattern we try to match (eg. [a-z] translates into 
qi::char_("a-z") ). Other bracket examples are:

• [a-zA-Z] – alphabetic characters
• [0-9a-fA-F] – hexadecimal characters
• [actgACTG] – DNA identifiers
• [\x7f\x7e] – Hexadecimal 0x7F and 0x7E

[^ ] – Matches a single character that is not contained within the brackets. For example [^abc] 
matches any character other than "a", "b" or "c". [^a-z] matches any single character that is not a 
lowercase letter from "a" to "z". As above, literal characters and ranges can be mixed. An 
expression of this kind translates into (qi::char_ - qi::char_("pattern")), which says 
"match any character but not a character which matches the specified pattern (in the second char_)".
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At some point we may also want to be able to match "]", "-" or "^" as literals. Genesis 
handles these special cases as follows:

• [^] – Matches the "^" character because you can't have an empty bracket expression 
• [^^] – Matches any character but not "^"
• [ab^] – Matches "a", "b" or "^"

• "]" is the ending bracket and Spirit is a greedy parser, so it's hard to parse this in the middle 
of a bracket expression. Thus, if we want to match a pattern and also "]" then we must put 
"]" as the last character: 

• []] –  Matches only "]"
• [^]] – Matches any character but not "]"
• [abc]], [^a-z]]

• []^] – Matches both "]" and "^"
• The "-" character is treated as a literal character if it is the last or the first (after the "^") 

character within the brackets: [^-abc], [-abc], [abc-]. Note that backslash escapes are 
not allowed

• [-a-z]] – Matches "-", a lowercase letter, or "]"

It's important to write our rules with care, because we may omit some characters and get a different 
result than expected, without knowing why that happened. For example [ab [cd] will match "a", 
"b", space, "[", "c" or "d" and not (("a" or "b") AND ("c" or "d")) – this is because we forgot to put a 
closing bracket after "ab". To get the second behaviour we need to write the expression like this :
[ab] [cd].

To match any single character, Genesis provides two parsers : $char and "." (a single dot). 
They are semanticly equivalent (they both translate to "qi::char_"), but we have them both in order 
to retain the "$ syntax" of Genesis parsers (see below) and also regular expressions ("." from regex 
has the same meaning as in Genesis). In the end, it's the user's choice which form he uses. 

3.3.3   Parsers

Character Parsers
Bracket expressions are also a type of character parser, but with a different syntax than those 
presented here. Spirit comes with a lot of single character parsers, for character classification. In 
Table 3 we can see the parsers provided by Genesis, their equivalent parsers in Spirit and their 
semantics. These parsers have an associated Character Encoding Namespace (in Table 3 represented 
by ns:: which can be ascii, iso8859_1, standard or standard_wide). Also, in the table we can see 
an "Equivalent to" field. For example, $alnum (and Spirit's alnum) matches a character based on the 
equivalent of std::isalnum in the current character set, so we put std::isalnum  in that 
column.

Genesis Spirit Semantics Equivalent to
$alnum ns::alnum Matches alpha-numeric characters std::isalnum
$alpha ns::alpha Matches alphabetic characters std::isalpha
$blank ns::blank Matches spaces or tabs std::isblank 
$cntrl ns::cntrl Matches control characters std::iscntrl 
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$digit ns::digit Matches numeric digits std::isdigit 
$graph ns::graph Matches non-space printing characters std::isgraph 
$lower ns::lower Matches lower case letters std::islower 
$print ns::print Matches printable characters std::isprint 
$punct ns::punct Matches punctuation symbols std::ispunct 
$space ns::space Matches spaces, tabs, returns, and newlines std::isspace 
$upper ns::upper Matches upper case letters std::isupper
$xdigit ns::xdigit Matches hexadecimal digits std::isxdigit

Table 3. Character Parsers

Numeric Parsers
Similar to the character parsers, Spirit (and Genesis) provides a number of numeric parsers. We can 
see the available ones in Table 4 along with their attributes (exposed types) and semantics.

Genesis Spirit Attribute Semantics
$float float_ float Parse a floating point number into a float 

$double double_ double Parse a floating point number into a double 
$long_double long_double long double Parse a floating point number into a long double 

$bin bin unsigned Parse a binary integer into an unsigned 
$oct oct unsigned Parse an octal integer into an unsigned 
$hex hex unsigned Parse a hexadecimal integer into an unsigned 

$ushort ushort_ unsigned short Parse an unsigned short integer 
$ulong ulong_ unsigned long Parse an unsigned long integer 
$uint uint_ unsigned int Parse an unsigned int 

$ulong_long ulong_long unsigned long long Parse an unsigned long long 
$short short_ short Parse a short integer 
$long long_ long Parse a long integer 
$int int_ int Parse an int 

$long_long long_long long long Parse a long long 

Table 4. Numeric Parsers

Boolean Parsers
Similar to the above, we have boolean parsers which can be seen in Table 5.
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Genesis Spirit Semantics
$bool bool_ Matches a boolean value
$true true_ Matches "true"
$false false_ Matches "false"

Table 5. Boolean Parsers

Auxiliary Parsers
Similar to the above, we have auxiliary parsers which can be seen in Table 6.

Genesis Spirit Semantics
$eol eol Matches the end of line (\r or \n or \r\n) 
$eoi eoi Matches the end of input (first == last) 
$eps eps Matches an empty string 

Table 6. Auxiliary Parsers

3.3.4   Operators

Grouping ()
This is not an operator but instead, parentheses are used to define the scope and precedence of the 
operators, which are also used for grouping different components. We'll provide examples which 
use them, later on.

Sequence (a b)
In Genesis this is not an operator because it's just a space that delimits two components, but this 
space translates into Spirit's sequence operator ">>". The sequence operator, a >> b (just a b  in 
Genesis), parses a and b in sequence. It's also important to mention that between two components, 
we can have any number of spaces or C/C++ comments.

Expectation (a : b)
Like the sequence, the expectation operator a : b  parses a and b in sequence, but exactly a 
followed by b. b is expected to match when a matches, otherwise, an exception is thrown. You can 
think of the expectation operator as a deterministic point in the grammar. Those are the places 
where backtracking cannot occur. In Spirit, a : b  translates into a > b .

Expectation is important when you have an exact pattern to match (can't be different). For 
example a credit card number is composed of 4 groups of 4 digits each, with an "-" between them, 
so you can use this operator because you expect to match this pattern precisely. 

Alternative (a | b)
This operator matches one of two or more operands. For example a | b | c  matches a or b or c.
The operands are tried one by one from left to right, and the first successful match short-circuits the 
search. This short-circuiting implicitly gives the highest priority to the leftmost alternative. More 
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than that, short-circuiting improves the execution time, so if the order of the alternatives is 
irrelevant, try to put the most common (most expected) choice first, for maximum efficiency.

Parantheses are useful in the context of the alternative operator and should be used to 
specify the desired intent. For example a | b c can be either (a | b) c  OR  a | (b c), so 
you should specify your intent with care. 

Difference (a – b)
The difference operator, a - b, is a binary operator that matches the first (Left Hand Side) operand 
but not the second (Right Hand Side). The expression will always fail if the RHS is a successful 
match, even if the RHS matches less characters. For example, the rule 
"policeman" - "police" will always fail to match. 

Again, for readability and expressing the correct intent, the difference expression should be 
put between parantheses. To try to match (once) any character between ' and ' , we would write 
rule = "'" ($char - "'") "'"  . This, first matches an ', then any character but not ', and 
then again ' - we do it like this because Spirit is a greedy parser and can't stop automatically just 
before the last '; if it can consume ' , then it consumes it regardless of what the next parser is. This 
small example is equivalent to rule = "'" [^'] "'". The difference operator will become 
more important after we introduce quantifiers. 

Kleene (a*)
The Kleene operator (the asterisk), a*, is a unary operator that matches its operand zero or more 
times. In Spirit a* translates into *a. A rule that matches C comments looks like this:

rule = "/*" ($char - "*/")* "*/"

The second component means that we want to match zero or more times, any character ($char) but 
not "*/". Again, Spirit is greedy and if we say any character any number of times ( $char* ) then it 
consumes all the input and won't stop regardless of what the next parser is (the literal "*/").

Another example would be to try to match a list of integers separated by commas, for 
example "11, 22, 33, 44, 55" : rule = $int ("," $int)*

Plus (a+)
The plus operator (plus sign), a+, is a unary operator that matches its operand one or more times. In 
Spirit, a+ translates into +a. If we want to parse one or more strings (that are separated by spaces) 
containing one or more alphabetic characters, we can write a rule like this: 
rule = ( $alpha+ $space+ )+  - this matches alphabetic characters (must be at least one), 
followed by at least one space, and all this at least one time.

Optional (a?)
The optional operator (the question mark), a?, is a unary operator that matches its operand zero or 
one time. In Spirit, a? translates into -a. For example, if we want to match the name of a person 
which is between quotation marks, and optionally its age, we can write a rule like this:
 

rule = '"' ($char - '"')+ '"' (',' $int)? 

This rule matches a ", then at least one character of any kind but not a quotation mark, then ", and 
then optionally a comma and an integer (the age of the person). 
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And-Predicate (&a)
Syntactic predicates assert a certain conditional syntax to be satisfied before evaluating another 
production, and don't consume any input. The and-predicate (lookahead operator), &a, is a positive 
syntactic predicate that returns a zero length match only if its predicate matches. 

The & operator passes only if its predicate rule passes. &"a" will only continue if the next 
character to be parsed is 'a'. rule = "end" &";" ";" matches the input string "end;" as 
follows : first matches the string "end", then peeks at the next character (";") without consuming it 
(if the character is ";" then move on to the next subrule to match, else the parser fails), and then 
matches ";".

Not-Predicate (!a)
The not-predicate, !a, is a negative syntactic predicate that returns a zero length match only if its 
predicate fails to match. The operator passes only if its predicate rule fails: rule = !"a" - checks 
to see if the next letter is "a" and if it is, it fails, otherwise it passes. In any case, the current iterator 
position is not moved. To parse a list of characters terminated by a ";" (eg. "abcdef;") we can write: 
rule = (!";" [a-z])* ";"

Note that the order of operators is important : the most important one (the one that applies first) is 
the not operator (!), followed by quantifiers (*, +, ?) and the lookahead operator (&). Thus :

• ![a-z]* = (![a-z])*  - put parantheses to get:  !([a-z]*)
• &[a-z]+ = &([a-z]+)  - put parantheses to get: (&[a-z])+
• &![a-z] = &(![a-z]) 

• Put parantheses and change the position of operators to get: !(&[a-z])
• &![a-z]? = &((![a-z])?)

List (a % b)
The list operator, a % b, is a binary operator that matches a list of one or more repetitions of a 
separated by occurrences of b. This is equivalent to a (b a)* (In Spirit a >> *(b >> a)).

We review the (Kleene operator) example which matched "11, 22, 33, 44, 55". To parse this 
easily we can write : rule = $int % ","  which is equivalent to rule = $int ("," $int)*

Permutation (a ^ b)
The permutation operator, a ^ b, matches a or b in any order. The operands are the elements in the 
permutation set. Each element in the permutation set may occur at most once, but not all elements 
of the given set need to be present. Note that by this definition, the permutation operator is not 
limited to strict permutations. For example, rule = "a" ^ "b" ^ "c" matches "a", "ab",  
"abc", "cba", "bca" ... etc. 

If we want more than one occurences of a component we can use the Kleene operator. To 
parse a string containing DNA codes (ACTG) (eg. to match "ACTGGCTAGACT"), we can write 
rule = ("A" ^ "C" ^ "T" ^ "G")*

Sequential Or (a || b)
The sequential-or operator, a || b, matches a or b or a followed by b. That is, if both a and b 
match, it must be in sequence; this is equivalent to a (-b | b) (In Spirit: a >> -b | b).
For instance, rule = ($int || ('.' $int)) matches :

• "123.456" – the whole number
• "123" – the first part
• ".456" – the second part (just the fraction)
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Note that it is advisable to put parantheses around the binary operators to express your exact intent 
and get the expected result. In the generated Spirit parser, the operands are separate components and 
using parantheses groups them into a single component. Because of that, using operands and binary 
operators without parantheses may create unexpected or unwanted results. 

More elaborate examples will be shown in Chapter 4, which will use many of the parsers and 
operators shown in these subchapters.

3.4   Grammar Options
3.4.1   Grammar Definition

Before talking about this, we need to mention something that was omited in the previous 
subchapters: we can use defined rules as parsers (subrules) in the current rule. For example:
rule1 = "hello" matches the literal "hello" and rule2 = rule1 "world" matches what 
rule1 matches (the literal "hello") and the literal "world". Also, we can use all the above operators 
on subrules, just as on any other component.

In subchapter 3.2 (and in Listing 1), we saw that to define the grammar of a DSL, you must 
write something like this: %grammar GrammarName@start_rule;. This is the default pattern: 
type %grammar, (at least one) space, grammar's name, the @ symbol, the name of the start rule and 
end with a semicolon. If in a grammar like this, we have for example m rules (rule_1, rule_2, ..., 
rule_m) then, the start rule will function as if it was defined as:

start_rule = (rule_1 | rule_2 | ... | rule_m)*

This is the default behaviour, to match each rule any number of times. We can override this 
behaviour by defining the start rule the way we want. We do it like this: 

%grammar GrammarName@start_rule = pattern; 

where pattern can be any valid expression (which uses the parsers and operators (and subrules) 
shown in the previous subchapters). In this new way of defining the start rule, we can also use rules 
defined below (so we can view the start rule as being top level and having access to all other rules 
of the grammar). Note that even if you don't use already defined rules in the definition, you must 
have at least one rule defined, even if it does nothing. For example 

%grammar GrammarName@start_rule = ($int || ('.' $int));
 
parses numbers with optional fractional digits, and does not use any other rule, but we must have a 
defined rule below, even if it's only rule = $eps which does nothing. 

For when we use the default behaviour, we have a functionality that allows us to not include 
certain rules in the default definition (as shown above) of the start rule. This can be used by putting 
an exclamation mark '!' before the name of the rule we want to define: !rule = <definition>. 
If Genesis finds this flag, then it won't put this rule into the definition of the start rule. For example: 

%grammar GrammarName@start_rule;
rule1 = <definition>
!rule2 = <definition>
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The start rule will be defined as start_rule = (rule1)* , and not start_rule = (rule1 | 
rule2)*. When defining our custom start rule, these '!' flags are ignored; the exclamation mark 
influences only the default behaviour of the start rule. But, with all these, if we define our custom 
start rule, we still need to have another rule defined. In the previous example, if both rule1 and rule2 
would have had exclamation marks, then, Genesis would have failed to parse because there was 
hasn't been any rule defined.

Next, we present a grammar we ran across when doing tests, which produces erroneous 
results for a specific input:

%grammar TestGrammar@start_rule; //start_rule = (rule1 | rule2)*
rule1 = "save" $space ([a-z]* $space)*
rule2 = ("save" | "load") $space ([A-Z]* $space)*

We give it the following string as input: "save this to a load THIS FROM B " , and if not paying 
attention, we would expect it to match "save this to a" and "load THIS FROM B " but this is not the 
case. Instead (again, Spirit is greedy), what it does is to match "save", space, and all the strings 
formed using lower case letters followed by a space. Thus, it actually matches "save this to a load " 
leaving only "THIS FROM B " as the remaining input, which can't be matched by any other rule, 
and the parser fails.

3.4.2   Skipper

A large part of this subchapter is based on the "Parsing Skippers and Skipping Parsers" tutorial 
from [W5]. Spirit supports skipper based parsing and so does Genesis. When parsing formatted data 
stream we may want to ignore some parts of the input, for example whitespaces and comments 
when parsing computer languages. We can define a rule which matches those, and put it whenever 
we can encounter them in input, but this is a tedious and error-prone task because the parts we try to 
skip can appear at any point in the input. Let's assume that we want to parse a simple key/value 
expression: key=value, and allow for any number of space characters before, in between and after 
the key or the value. A grammar that would match the key/value pair without whitespace skipping 
would look like this :

pair  = key '=' value
key   = [a-zA-Z_] [a-zA-Z_0-9]*
value = [a-zA-Z_0-9]+

If we want to modify rule pair to match the whitespace characters, we get:

pair = $space* key $space* "=" $space* value $space*

which, while produces the desired result, is error prone, difficult to write, understand and maintain. 
Genesis (based on Spirit's functionality) overcomes this by allowing the user to specify the desired 
skipper parser. The default syntax is : 

#skipper SkipperName@start_rule = pattern #end

This definition starts with the keyword #skipper, then it requires at least a space, skipper's name, 
the @ symbol, the name of the start rule, the equal sign, a pattern, at least a space and the keyword 
#end. This definition has to be put under the definition of the grammar. The pattern definition is 
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similar to when defining a grammar, and the current Genesis version supports only parsers and 
operators, and not subrules. These definitions (%grammar and #skipper) produce in the 
background two different grammars, that is two different classes, and thus, can't "communicate" one 
with the other, so we can't use rules defined below (for the grammar) in the definition of the skipper. 
For the record, the grammar class actually uses the skipper class in its definition. Also, the skipper 
name is used to name the skipper class, and the name of the start rule is used to name the first rule 
used by the skipper. Pattern definition doesn't end with a semicolon, but with the #end keyword.

If we want to use the skipper parser in Genesis, all we have to do is define it (as seen above), 
and the skipper will be automatically enabled. This means that it will skip the mentioned parts from 
input. For example, if we define a skipper with start_rule = $space then, if at input we have 
the string "this is a test", this will be seen as "thisisatest" (the whitespaces were skipped) by the 
parser. Same applies to our pair rule above. When actually parsing, we don't need the spaces before, 
in between, and after the key or the value, because they don't have any value, we just want to allow 
them to be written by the user and nothing more. For that, we can define a whitespace skipper, use 
the rule as above (pair = key '=' value), and provide an input which can contain 
whitespaces. 

The following example defines a skipper which ignores whitespaces, C and C++ comments:

#skipper 
skipper@start = $space 
|   ("/*" ($char - "*/")* "*/")    // C comments
|   ("//" ($char - $eol)* $eol)    // C++ comments

#end

Directive lexeme[]
A problem with the skipper parser is that it applies to all rules (also note that the Spirit code has the 
skipper parser attached to each of the rules of the grammar). Thus, if we want to turn off skipping 
for a small part of the grammar, we need to use our rules in combination with the lexeme[] 
directive. This directive inhibits skipping during the execution of the embedded parser. For 
example, in a larger grammar, if we have a whitespace skipper enabled and want to parse some 
quoted text without skipping the whitespaces between quotes, we can write the following rule:

Text = '"' lexeme[($char - '"')*] '"'

(you can also put the quotes in lexeme[]). Here, the lexeme directive disables skipping while 
matching the string, which avoids "loosing" characters otherwise matched by the skipper. Please 
note that lexeme[] performs a pre-skip step (Spirit supports the no_skip[] directive which does not 
do pre-skipping in any case, but this directive is not currently supported by Genesis).

Lexeme can use between its brackets any expression based on the parsers and operators 
shown above, but can't use rules! This is because when the skipper is defined, automatically in the 
Spirit code each rule has the skipper attached; lexeme inhibits skipping, so calling a rule which (has 
the skipper attached and) requires skipping to work, results into a compilation error. Note that a rule 
without skipper (when we don't define one globally) acts like an implicit lexeme.

You need to be careful at how you write expressios with lexeme[]. For example, 
rule = lexeme[[a-z]] is wrong and results into a compilation error. This is because in the 
translation process, Genesis parses lexeme[, and then (the greedy Spirit parser which tries to match 
as much as possible) [a-z]] which is a valid bracket expression, leaving lexeme[ without a closing 
bracket. Thus, we should rewrite the rule into rule = lexeme[[a-z] ] (note the whitespace). 

One last thing you need to know about lexeme is that, Genesis does not allow you to put 
operators around it, because lexeme is just a directive, it inhibits skipping and expressions like 
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&lexeme[] or lexeme[]* don't make sense. Instead, you can put those inside lexeme's brackets 
and form any kind of expression you want.

3.4.3   Modes of Operation

In subchapter 3.2 (and Listing 1) we said that after we define what a rule matches, between '<%' and 
'%>;' we specify what it should generate. These delimiting sequences are mandatory, and can't be 
omited. As you may have observed, we didn't put them in the previous subchapters, and this is 
because we wanted to show the allowed syntax for defining rules. Now we introduce them, and also 
the two modes in which they can operate: static and dynamic.

Static
Before explaining how this mode works, we provide an example :

%grammar StaticGrammar@start;
#static
rule1 = "hello" $space [a-z]+ <%Matched rule1%>;

Note that we said that the generation mechanism is language independent, so Genesis just replaces 
the matched strings from input, with the text to generate specified for each rule. In our case, if the 
input is "hello world", then this will be consumed and replaced with "Matched rule1".

To activate this mode just put the keyword #static after the %grammar definition, and 
before defining any rule. This mode is useful when we just want to do plain generation (find and 
replace) – replace pieces of the input string with the text to generate from the rules that match. This 
mode is faster than the dynamic mode and also compiles the parser faster.

Dynamic
The static mode is limited to only generating a specified text, but we can't insert in this text the 
components the rule just matched. This is where the dynamic mode comes into play. It allows you 
to use the values of the matched components as strings, between the code generation delimiters. You 
can do that with the following syntax: $component_number; (for example: $1; , $2; , etc).
$1; refers to the first matched component,$2; to the second, and so on. We modify our example into:

%grammar DynamicGrammar@start;
rule1 = "hello" $space [a-z]+ <%Matched [$1;][$2;][$3;]%>;

For the input "hello world", the output is "Matched [hello][ ][world]". We can see easily that it 
generated the matched components. The numbering starts from 1, and can't be less than that (eg. 0, 
-1, etc), or greater than the number of components the rule has (eg. In our case $4; , $5; etc). You 
may have also noted that after $ and the number of the component we put a semicolon. This is done 
because there may appear ambiguities without it – if for example in the string to generate we put 
$11, and our intention is to generate the first matched component and put a 1 after it, but the (greedy 
Spirit) parser which matches an integer will take as much as possible, in our case 11, but there isn't 
an 11th component and the parser will fail. That's why we put a delimiter after the number – could 
have been space, but for an exact generation we delimit it like this. 

Note:
• This mode is the default one so, we don't have to put any option flag to enable it
• What's between '<%' and '%>;' is a string (C++'s std::string) – all matched components 
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must be converted into strings (in the background), and that's why this mode in a bit slower 
than the static mode

• Any expression (no matter how complex) between parantheses is counted as a single 
component (and implicitly has a single index)

• & and ! operators have an index but their values are "" (blank), because they don't consume 
any input

• Literals and spaces in Spirit don't have an attribute (don't return a value, they just match 
something), but in Genesis they do, so you can use the index on a literal or space component 
to get their values

3.5   Semantic Actions
Only the code generator component isn't enough; we also want to be able to access and manipulate 
the parsed values. We can do this with semantic actions. We can attach semantic actions to any 
components of a rule, or the rule itself, by putting between brackets the name of the function we 
want to execute. For example:

rule = [a-z][f] [A-Z]*[g] <%Generated text%>[h];

has 3 semantic actions, each calling a certain function : f, g and h. Note that the semantic action for 
the second component is put after specifying quantifiers (that's how it must be done for all 
components when using quantifiers). f, g and h are actually C++ functions that have a certain 
pattern for their parameter list: 

void function(error_handler, pass, val, data)

• pass must be a bool& - if in the function it gets the value false, then the parser will fail, 
else (unused or set to true) it doesn't fail, and moves on with parsing

• error_handler must be a string& - when we put false to pass, we can assign 
error_handler a string error message that will be shown on screen 

• val can be either string& or vector<string>& - it refers to the already accumulated 
value from parsing (we'll see this later on)

• data - stores the parsed value
• All these values can be without &, but we must put it if we want to change the base value

As we've seen in the previous subchapter, static and dynamic modes are different in behaviour. The 
dynamic mode converts everything into strings (in the background), because it needs them to be of 
this type, to be used at generation. The static mode doesn't do any convertion and the parsed values 
have their original types (eg. in static mode $int returns an integer type, whereas in dynamic mode it 
returns an integer but it's converted to string). For this reason, data and val can have different 
values based on the mode of operation used. 

For the static mode, val is always a string. We'll provide a list of functions with different 
parameter lists, and then link the available components with the functions they can use:

void S1(string& err, bool& pass, string& val)
void S2(string& err, bool& pass, string& val, string& data)
void S3(string& err, bool& pass, string& val,<depends on the parser used>& data)
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• Literals: as we said before, in Genesis they return a string so we can have a rule like 
rule = "test"[S2] which takes the literal as a string

• Bracket expressions
• rule = [a-z][S3] – S3 with char& data
• rule = [a-z]+[S3] – S3, also with char& data ! It calls the function for each 

character encountered. To force it call only once, use parantheses:
• rule = ([a-z]+)[S3] – S3 with vector<char>& data calls only once, with the 

vector of chars
• Group component: rule = (any expression)[S3] OR (any expression)[S1!]

• In the first form we write any expression between parantheses, but the problem is that 
we need to deduce the type for data ourselves – eg. ($int) will be int& data but 
($int+) will be vector<int>& data , and so on

• In the second form, observe the exclamation mark – this only applies to group 
components and is used when the expression between parantheses is more complex and 
you don't know what type data has, or don't want to use the data anyway, just use the 
semantic action to call the function – its semantics (for our example) is "S1 only!", 
meaning "function only!", without bothering about the type of data

• The group component can be used to enforce the change of type for the data parameter, 
as we saw in the previous bracket expression

• Parsers
• They use S3 with different types for data depending on the parser used (int for $int, 

double for $double, etc)
• Auxiliary parsers use S1 because end-of-line ($eol), end-of-input ($eoi) and epsilon 

($eps) don't return data which can be used
• & operator: rule = &component[S1] uses S1 because it doesn't return data which can 

be used (as it does not consume any input)
• lexeme[]: rule = lexeme[<expression>][S1]  uses S1 because it doesn't return data 

which can be used (it's just a directive to inhibit skipping)
• Subrules:

rule1 = <definition> <%String to generate%>;
rule2 = rule1[S2]

data will be of type string and store the generated string by rule1! In our case, string& 
data will contain "String to generate"

• End of the rule: rule = <definition> <%String to generate%>[S1]; - this is 
without data because there is no parsed value, just the generated string. An important aspect 
is that we can access val, which means we can access the string this rule generates.

For the dynamic mode, val can be string or vector<string>. We'll again provide a list of 
functions with different parameter lists, and then link the available components with the functions 
they can use :

void D1(string& err, bool& pass, string& val, vector<string>& data)
void D2(string& err, bool& pass, vector<string>& val)
void D3(string& err, bool& pass, vector<string>& val, string& data)

• Literals, bracket expressions, parsers, and & operator: All use D3! So, data is a 
string, but val is a vector<string> ! This is because each of these components is put 
into a separate rule in the background, and these (background) rules always return 
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vector<string> no matter what the rule definition is – components are put in different 
rules in order to transform them in strings, to be able to use them in the generation part with 
$ indexes

• Group component: rule = (c1[D3] (<any expression>)[D2])[D1] 
• The c1 component uses D3 for the same reason literals, bracket expressions and parser 

use it (as explained above)
• Any inner parantheses use D2 and don't have data, because they can be of any 

complexity - like for the above components, we move group components into other 
rules, but only the outer-most group components and not inner ones, because it would 
add too much complexity to the parser

• The outer-most component uses D1 and has data of type vector<string>, because it 
synthesizes a string and can use quantifiers so, we need a vector of strings to keep them

• In the static mode we could use the exclamation mark for group components semantic 
actions. We may switch between static and dynamic mode and in order to not get an 
error, we allow the same syntax with '!' after the semantic action function, but the 
exclamation mark is unused here

• lexeme[]
• rule = lexeme[<expression>][D1]  uses D1 and data is a vector<string>
• rule = lexeme[c1[D2] c2[D2]] -  inner lexeme components (c1, c2, etc – can be 

of any complexity) use D2  for semantic actions, so they don't have data
• Subrules:

rule1 = <definition> <%String to generate%>;
rule2 = rule1[D1]

data will be of type vector<string> because the rule can have quantifiers (like * and +) 
and then it takes all strings. In rule2, rule1 returns the string it generates (or another string, 
generated in a semantic action)

• End of the rule: rule = <definition> <%String to generate%>[D1]; - again 
D1, and data is of type vector<string> but stores all the previous components !!! so 
you can access this vector the same way you use $ indexes (except that here it starts from 0)

Note:
• For any component, we need to have the brackets of semantic actions attached to the 

component (i.e. when finished defining a subrule and want to use a semantic action, open a 
bracket just there, and then write the function and the closing bracket. So, Genesis does not 
allow for spaces between the definition of the component and the semantic action, because 
the rule definition would not be understandable anymore). Inside the semantic action's 
brackets we can put spaces and comments wherever we want

• In dynamic mode we can't have a lexeme[] inside a group component (inside parantheses) 
because lexeme[] does not return anything and when trying to synthesize a value, the 
parantheses rule can't deduce it. A workaround for this is to define a rule only for the lexeme 
and use that rule inside the group component

• In dynamic mode even if everything is a string, in the semantic action (in the function that 
gets called) you can convert each component in its original type, and use it like this if you 
need it (eg. $int gets converted to string, but in a semantic action you can reconvert it to an 
integer)

• At the beginning of this subchapter we said that val can be either a string or a 
vector<string> and it refers to the already accumulated value. To explain this better, 
consider the following rule and code: 
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rule = "hello"[f] [a-z][g] <%generated string, %>[h]; 

void f(..., val, ...) { val  = "called f(), "; }
void g(..., val, ...) { val += "called g(), "; }
void h(..., val, ...) { val += "called h()"; }

For example, for the input string "hello world", this rule outputs "called f(), called g(), 
generated string, called h()". This thing was possible by manipulating the val parameter. In 
f() we assign it a value, then in g() we update this value by concatenating another string, 
then it comes the generated string, and then we again add to this accumulated value, the 
string from h(). An important thing to keep in mind is that Genesis, when it gets to the 
generated value of a rule, it uses the += operator to add the generated string to the big 
grammar value. This means that the generated value will be concatenated to whatever value 
val has accumulated throughout the rule (by semantic action manipulation). Also, note that 
you can pass values between components of a rule by using val – in one component give 
val a value, and in another component (from the same rule) use the passed value

• It's also important to manipulate correctly not only val but also error_handler. You can 
again use this to pass values between functions in the same rule or other rules, by changing 
its value with = or += (if want to accumulate values). It's good to remember to use = and += 
correctly with error_handler. You may want in a function to store in it only a warning 
(so you'd use the = operator) without changing pass to false, and further on in another 
function, to add an error message (using the += operator) and change pass to false to fail 
the parser – so the problem is to not forget to use = only when want to give 
error_handler (or val) a new value, and += when want to add a string to the already 
accumulated value 

• You should know to use $eps (epsilon) in your advantage. You may want to just use a 
semantic action and not parse anything, so you can use $eps with that semantic action. Also 
when it comes to accumulating values (in val) you can use $eps[function] just before 
<%%>; to pre-process val, and use <%%>[another_function]; to post-process val 
(pre-process and post-process in the context of the generated value)
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Chapter 4

Usage Scenarios

In subchapter 1.4 we presented some well known DSLs (like SQL or regular expressions) and also, 
other less known DSLs, targeting different application domains. In this chapter we show what 
Genesis is capable of doing, and for that, we present some DSLs created in Genesis and provide 
some usage scenarios for them. Please note that in the following subchapters we'll only present the 
grammars of DSLs, usage scenarios (input data) for them and how the output looks, and not what 
each rule generates or what semantic actions it uses, etc. To see the full implementation (called 
functions, used libraries, semantic actions, etc) of the following samples, refer to the samples/ 
folder of the Genesis package, where all samples (with full implementation) can be found.

4.1   Simple Poll
The artifacts generated from a DSL don't have to be just implementation artifacts. We can build a 
suitable model which can be used to generate build scripts, purchase orders, questionnaires, 
documentation, bills of materials, plans or skeletons of legal contracts. The sample presented in this 
subchapter is a simple DSL which allows us to define polls (or questionnaires). This scenario is 
based on a similar simple poll example from [A53], created with the (Java based) Xtext framework 
[W8]. With this, we wanted to show that Genesis can build a similar DSL and generate the same 
output as in [A53]. 

In Listing 2 we can see the Genesis grammar for the simple poll sample. A poll starts with 
the "Poll" keyword,  then it needs a name (which should be between quotation marks), and after 
that  it can have any number of questions. These questions can be text, single choice or multiple 
choice. A text question translates into a HTML text input. A single choice question can have some 
options for the user to choose from, and all these translate into HTML radio buttons. A multiple 
choice question can also have some options, which translate into HTML checkboxes. 

%grammar PollGrammar@start = Poll;

#skipper skipper@start = $space #end

quoted_string = '"' lexeme[(. - '"')*] '"'
name = lexeme[(. - ( '[' | '(' | $space ) )*]

Poll = "Poll" quoted_string Question*

Question = (TextQuestion | SingleChoiceQuestion | MultipleChoiceQuestion)

TextQuestion = "question" quoted_string name (&"question" | $eoi)
SingleChoiceQuestion = "question" quoted_string name &"()" SingleChoiceOption+ 
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MultipleChoiceQuestion = "question" quoted_string name &"[]"   
                         MultipleChoiceOption+ 

SingleChoiceOption = "()" quoted_string name
MultipleChoiceOption = "[]" quoted_string name

Listing 2. Grammar of the Simple Poll Sample

In Listing 3 we can see an instance of our DSL. When processed with Genesis, this instance 
translates into HTML code. In Figure 6 we can see the generated HTML file opened in a browser 
window. When visually comparing Listing 3 and Figure 6 we can see that they are very similar and 
the listing is very expressive, making it easy to understand even for non technical persons. Also, 
compare how much HTML code must be written by hand in order to get that, and how easy it was 
to generate it.

use "D:\Genesis\samples\poll\poll.dsl" as poll;

<%poll Poll "Simple Poll"

question "What's your name?" name

question "How do you feel today?" howareyou
() "Fine" fine
() "Great" great
() "Bad" bad
() "Not too bad" not2bad

question "What's your favorite food?" food
[] "Pizza" pizza
[] "Pasta" pasta
[] "Sushi" sushi
[] "Mexican" mexican
%>;

Listing 3. Instance of Simple Poll DSL

Figure 6. Generated Output for the Simple Poll Sample
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4.2   Shapes
In this sample we manipulate two 3D objects (a cube and a sphere) on a 500x500 board (each 
square is 10x10 units). In Listing 4 we can see this sample's grammar and in Listing 5 an instance of 
the DSL we create. The poll sample used Genesis' code generation utility, while this sample uses the 
interpreter functionality. 

At first, we want to be able to initialize the components we work with. We do this by typing 
Initialize and between curly braces we can modify the attributes of objects. These attributes can be 
specified either between round parantheses (and change color) or between square brackets (and 
change position). In our example, we modify the color of the board (a color attribute for each of the 
two different squares), and also modify the color of both square and sphere, and assign them an 
initial position. Before beginning, we may also want to change the perspective. We do this with the 
"Perspective" keyword and a pair of attributes between square brackets for the position and look of 
the camera. Afterwards, we can start moving the square of sphere the way we want. Our DSL 
allows objects to move left, right, up and down. If mentioned only once, the object moves once in 
the specified direction, but we can also put a number after the direction and move the object that 
number of times. Lastly, in the context of objects or outside the place they move, we can delay 
actions with the keyword "Delay" followed by the number of milliseconds to delay.

%grammar ShapesGrammar@start = Init;

#static

#skipper 
skipper@start = $space 
|   ("/*" ($char - "*/")* "*/") // C comments
|   ("//" ($char - $eol)* $eol) // C++ comments

#end

Init = "Initialize" "{" Config "}"
(Perspective | Shape | Delay)*

Config = Board ^ Cube ^ Sphere

Board = "board"
"(" ($int % ',') ")" 
"(" ($int % ',') ")"

Cube = "cube"
"(" ($int % ',') ")" 
"[" ($int % ',') "]"

Sphere = "sphere"
"(" ($int % ',') ")" 
"[" ($int % ',') "]"

Perspective = "Perspective"
"[" ($int % ',') "]"
"[" ($int % ',') "]"

Shape = "Shape" ("cube" | "sphere")
"{" (Move | Delay)* "}"
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Move = "move" ( 
( ( "up" | "down" | "left" | "right" ) $int)
| ( "up" | "down" | "left" | "right" )

      )

Delay = "Delay" $int

Listing 4. Shapes Sample Grammar

The code shown in Listing 5 is intepreted and the "output" is the sequence of actions which 
manipulate graphical objects as described in code. A snapshot from when running the interpreter 
can be seen in Figure 7.

use "D:\Genesis\samples\shapes\shapes.dsl" as sh;

<%sh

Initialize{
board (0, 145, 195)(252, 250, 218)
cube (253, 253, 0)[30, 0, 20]
sphere (78, 197, 56)[35, 5, 15] 

}

Perspective [30, 75, -30][30, 0, 40]
Delay 200

Shape cube
{

move right
move down 2
move left 2
move up 2
move right

}

Perspective [-20, 75, -20][30, 0, 40]

Shape sphere 
{

move left
move up 2
move right 2
move down 2
move left

}

Perspective [30, 75, -30][30, 0, 40]

Delay 2000

%>;

Listing 5. Instance of Shapes DSL
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Figure 7. Instance of Shapes Sample Being Interpreted

Such a DSL and the way it's interpreted, is a good starting point for thinking of more realistic 
examples which could be adapted: the movement of a robot or a car, simulations in meteorology, 
military or medical fields, and so on.

4.3   Security Protocols
This sample targets the security field and it's about making a DSL which allows us to write security 
protocols. In Listing 6 we can see this DSL's grammar. First we may want to give our protocol a 
name – we do that with the "Protocol" keyword and specify a name between quotation marks. 
Then, we need to specify the components the protocol will use. These components can be: agents, 
servers, intruders, timestamps, nonces, public keys, shared keys or signatures. Once we declared 
what we need, we can start writing our protocol. This is done in the classical manner: write the 
number of the step we are currently at, the sender and the receiver with an -> in between, a colon, 
the message, and end the step with a point.

%grammar SecurityProtocolsGrammar@start = Protocol;

#skipper 
skipper@start = $space 
|   ("/*" ($char - "*/")* "*/") // C comments
|   ("//" ($char - $eol)* $eol) // C++ comments

#end
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Protocol = Name? Setup ProtocolSteps
   

Name = "Protocol" Text
Setup = (Component ConstDeclarations ";")+
ProtocolSteps = ($int "." ID "->" ID ":" Message ".")+

Component = ( "Agent" | "Server" | "Intruder" | "Timestamp" 
| "Nonce"  | "PKey" | "SKey" | "Signature")

ConstDeclarations = (ID % ",")

ID = [a-zA-Z_] [a-zA-Z0-9_]*
Text = '"' lexeme[($char - '"')*] '"'

Message = ((CryptoComponent | ID | Text) % ",")
CryptoComponent = "{" Message "}" ID?

Listing 6. Security Protocols - Grammar

Having this DSL we can start writing various protocols. In Listing 7 we can see the Needham-
Schroeder-Lowe public key protocol and in Listing 8 the Kerberos protocol.

use "D:\Genesis\samples\secProtocols\secProtocols.dsl" as sp;

<%sp
Protocol "Needham-Schroeder-Lowe Public Key"

Agent A, B;
Nonce NA, NB;
PKey K_A, K_B; 

1. A -> B : {NA, A}K_B .
2. B -> A : {NA, NB, B}K_A .
3. A -> B : {NB}K_B .
%>;

Listing 7. Needham-Schroeder-Lowe Public Key Protocol 

use "D:\Genesis\samples\secProtocols\secProtocols.dsl" as sp;

<%sp 
Protocol "Kerberos"

Agent A, B;
Server S;
Nonce NA, NB, NS;
PKey K_AB, K_BS, K_AS; 

1. A -> S : A, B .
2. S -> A : {NA, B, K_AB, {NS, K_AB, A}K_BS }K_AS .
3. A -> B : {NS, K_AB, A}K_BS , {NA, A}K_AB .
4. B -> A : {"NB + 1"}K_AB .
%>;

Listing 8. Kerberos Protocol
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When parsing an instance of this DSL, it should print on screen the components matched and if 
there were any errors (redefined components, use of undefined components, wrong step numbers, 
etc). In Listing 9 we can see the output from processing the Needham-Schroeder-Lowe protocol. It 
first prints the name of the protocol, the defined components, and then, for each step, the sender and 
the receiver, and the name of the used components.

===Protocol Needham-Schroeder-Lowe Public Key===

Agent A
Agent B
Nonce NA
Nonce NB
Public Key K_A
Public Key K_B

===Step 1===
Sender[Agent]: A
Receiver[Agent]: B
{
   NA  <- Nonce
   A  <- Agent
}K_B  <- Public Key Encryption

===Step 2===
Sender[Agent]: B
Receiver[Agent]: A
{
   NA  <- Nonce
   NB  <- Nonce
   B  <- Agent
}K_A  <- Public Key Encryption

===Step 3===
Sender[Agent]: A
Receiver[Agent]: B
{
   NB  <- Nonce
}K_B  <- Public Key Encryption

Listing 9. Output from Processing the Needham-Schroeder-Lowe Public Key Protocol

A DSL of this kind is a good starting point for more complex solutions; we can: create theorem 
provers for security protocols, simulate the exchange of packets on the network or simulate 
intruders trying to break a protocol, generate generic implementations for GPLs, and so on.

4.4   Packet Filter
Lastly, we present another security sample, this time a packet filter. Its grammar is presented in 
Listing 10, and its implementation is based on WinPcap [A54], a packet capture library. Here, we 
want to start a new capturing session and then analyze the captured packets. We need to pick a 
device on which to "listen" for packets, choose an output file (a file in which the capture will be 
dumped), possibly a filter and an analyzer. For analysis we use an external tool, in our case the 
tshark analyzer which comes with the Wireshark [W9] network protocol analyzer. After we 
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specified these options, the packet capture session starts on the mentioned device, and we end it by 
pressing the return key. After that, we analyze the capture with the show command. We can show 
all packets (show all), show all packets which match a filter (show all "filter"), show a 
certain frame (show frame) or show a frame in an extended form (show frame extended). 
Please note:

• Rule Show is important in that it shows how Genesis (and Spirit) behaves and how we 
should write rules correctly: if we have two rules and one rule is the prefix of the other, then 
we must put the longer rule first and then its prefix. Because Spirit (and implicitly Genesis) 
is a greedy parser, in an alternative sequence it will choose the first rule that matches. Thus, 
in our case if we had show all and then show all Text, it would always match show 
all but never show all Text because the first rule matched is always successful. Thus, 
we need to be careful how we write rules in Genesis

• Because the listing of the captured packets can be long, we have a PressKey rule which is 
identified in a DSL instance by the @ symbol. This means that at that point, all actions must 
stop until the user hits the return button. In grammar, we can see that it does not generate 
anything, but the rule has the waitKeyPress semantic action which has only one 
instruction : cin.get()

%grammar CapturePacketsGrammar@start = Init;

#skipper 
skipper@start = $space 
|   ("/*" ($char - "*/")* "*/") // C comments
|   ("//" ($char - $eol)* $eol) // C++ comments

#end

Init = (Session | Show | PressKey)*

Text = '"' lexeme[($char - '"')*] '"'

Session = "session" "{" Device OutputFile Filter? Analyzer "}"

Device = "pick" "device"
OutputFile = "output-file" "=" Text
Filter = "filter" "=" Text
Analyzer = "analyzer" "=" Text

Show = "show" ( 
  ("all" Text)
  | "all"
  | ("frame" "extended")
  | "frame"
  )

PressKey = "@" <%%>[waitKeyPress]; //cin.get();

Listing 10. Packet Filter's Grammar

In Listing 11 we can see an instance of our DSL and in Figure 8 the output of the show all 
command (which captured ping requests and replies). 
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use "D:\Genesis\samples\pcap\pcap.dsl" as pcap;

<%pcap

session{
pick device
output-file = "out.txt" 
filter = "tcp"
analyzer = "C:\Program Files\Wireshark\tshark.exe"

}

@ show all 
@ show all "udp"

show frame
show frame extended

%>;

Listing 11. Instance of Packet Filter DSL

Figure 8. Show All Command Output

This sample is important because, based on it we can think of implementing more realistic 
applications which could benefit from the usage of DSLs : network and protocol analyzers, network 
monitors, traffic loggers, user-level bridges and routers, network intrusion detection systems, 
network scanners and other various security tools.

47



Conclusions and Future Work

This thesis presented Genesis, a C++ library which eases the development and use of textual DSLs. 
To create a new DSL you need to follow a few steps. First, we have to express the domain specific 
notions of the problem domain by creating the grammar of the DSL. This implies creating rules for 
the new language and specifying how they should behave: generate code, execute code (with 
semantic actions) or both. The  code generation functionality is language independent (can generate 
any kind of text, from plain text to source code of any language), whereas semantic actions rely on 
C++ to define the way they work. Next, we can start writing instances of our newly created DSL. 
We can either create stand-alone code or intermingle our DSL code with another (usually general 
programmning) language. From our DSL grammar and implementation, Genesis generates a 
Boost.Spirit [W5, W6] parser, which built, creates a binary parser. With it, Genesis parses the DSL 
instances we wrote, consumes them, and generates another code in place (if we choosed to generate 
code) or executes the specified semantic actions (if we choosed this), or can even do both. 

Even though powerful, Genesis can still be enhanced with new features. Genesis implements 
most of the features provided by Boost.Spirit.Qi, but it should implement all of them in order to 
create even more powerful parsers. The code generation utility should also have an escaping 
character available because otherwise,  if we want to generate code for a scripting language like 
Perl which also uses $number expressions, we may get unexpected results or even crash the 
application. Genesis comes under the form of a library, and also has a command line interface 
application which uses the library to show its features, but a GUI application would be more useful 
because it could implement a lot of features that could help the user in creating, testing and using 
DSLs. Last but not least, certain optimizations could and should be made to get Genesis work even 
faster.

Although frameworks for developing DSLs exist, most of them are based and target 
languages like Java or C#. Growing in level of abstraction (and adding a large number of features) 
usually results in slower applications. Instead, we can use Genesis to create our high level 
languages, and either generate or execute code out of instances of these languages, without getting 
any penalty. Thus, with Genesis we try to create a new perspective on developing DSLs in C++, and 
also take advantage of the benefits of the C++ language: create highly optimized code for high-
performance applications in order to tackle some of the most difficult problems, and produce 
cutting-edge solutions. 
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